Pumping Money Into the Oil Industry: Billions in Subsidies Flow Through Carbon Capture to Fossil Fuels

New analysis from Food & Water Watch finds that the Trump administration's 2025 tax law unlocked a potential \$210 billion in additional subsidies for oil extraction through a process known as enhanced oil recovery (EOR). First promised as a way to justify continued burning of coal, the practice of capturing carbon and using it to extract oil was later touted as a critical "bridge" technology to "pure" sequestration that simply buried carbon underground. In fact, EOR has been the dominant fate of captured carbon for the entire history of carbon capture and sequestration (CCS). Changes brought about by the 2025 tax law appear to throw in the towel on using EOR as a stepping stone, eliminating the sequestration premium by raising the already generous 45Q tax credit 40 percent for oil producers.

Carbon Capture Is a Backdoor for Oil Subsidies

One of the largest federal subsidies for carbon capture is the 45Q tax credit, which rewards corporations for each ton of carbon dioxide (CO₂) they inject underground.¹ Historically, 45Q distinguished between CO₂ injected for EOR and CO₂ injected purely for sequestration.² However, the "Big Ugly Bill" of July 2025 erased the distinction between EOR and sequestration, raising the value of CO₂ used in EOR to \$85 per ton (a more than 40 percent increase).³ All told, this increase could be worth \$210 billion to the oil industry.⁴

EOR is a disaster for the climate. According to an industry consultant, in 2022 EOR was used to produce an additional 88.2 million barrels of oil.⁵ The U.S. Environmental Protection Agency (EPA) says that 36.7 million metric tons of CO₂ were "used" in EOR (although only 19 percent of that CO₂ met the EPA's "sequestration" criteria).⁶ That means that every ton of CO₂ injected for EOR produces 2.4 barrels of oil, which when burned emits more CO₂ than was injected.⁷ In recent years, oil production per metric ton of CO₂ used in EOR has increased.⁸ A U.S. Geological Survey study of future EOR potential found that an average of 3.5 barrels of oil is produced per metric ton of CO₂ "stored"; if burned, this oil would emit 1.5 tons of CO₂ for every ton injected.⁹

45Q heavily subsidizes this process. At 2022 rates of CO₂ use per barrel of oil produced, 45Q would be worth around 37 percent of the average sale price of a barrel of oil. ¹⁰ This oil also contains potentially valuable CO₂. A single barrel of oil when burned emits 0.43 metric tons of CO₂. ¹¹ If captured, this CO₂ would be worth \$36.55 in 45Q credits — 48 percent of the cost of the oil sold on the market. ¹²

FOOD&

WATER WATCH

The Stepping Stone Myth

Supporting the oil industry was openly a goal of carbon capture when the technology was largely known as "clean coal." During the George W. Bush administration, Congress established the Clean Coal Power Initiative, providing \$2 billion to fund private sector coal demonstration projects such as CCS.¹³ These projects were touted as a way to boost oil production by supplementing the supply of naturally occurring CO₂ that oil producers injected into older oil reservoirs to increase production, a process known as enhanced oil recovery.¹⁴

However, much like the roundly debunked "bridge fuel" prediction that fracked natural gas would pave the way for a transition from coal to renewable energy, ¹⁵ CCS proponents claimed that EOR would help scale up carbon capture in the short term and improve the viability of pure sequestration in the long term. ¹⁶ In 2008, the environmental organization Natural Resources Defense Council (NRDC) promoted EOR as a great way to increase oil production. ¹⁷ In 2011, groups including the Clean Air Task Force and NRDC, along with corporations such as Archer Daniels Midland and Arch Coal, participated in the National Enhanced Oil Recovery Initiative (NEORI). ¹⁸

NEORI argued that EOR deployment would lead to CCS cost reductions and create a national infrastructure that could be used beyond oilfields. ¹⁹ During the Obama administration, these groups promoted the idea that EOR could develop CCS technology and ultimately pave the way for CCS that does not involve oil production. ²⁰

CCS Is Still Almost Exclusively Used for Oil Production

To the extent that carbon capture has managed to scrape marginal amounts of CO₂ from the waste streams of industrial facilities, it has served to prop up oil production and supplement natural sources of CO₂. In the last few years, traditional "domes" where naturally occurring CO₂ is mined for EOR have experienced contamination, production declines, and in one case near-total depletion.²¹ Carbon capture also enables oil fields that lack pipelines to CO₂ domes to use EOR, further increasing oil production.²²

According to a December 2023 report from the Congressional Budget Office, nearly 95 percent of the CCS capacity operating as of September 2023 was providing CO₂ to oil producers for use in EOR.²³ Only 11 percent of all produced and captured CO₂ in the U.S. in 2022 went to non-EOR applications, primarily food and beverage applications in which CO₂ is re-emitted to the atmosphere.²⁴ Even as the transition to non-EOR CCS failed to emerge, the Clean Air Task Force continued to claim that future projects may not follow the same trend.²⁵

As carbon capture has largely failed to progress from the "stepping stone" of enhanced oil recovery, CCS proponents and the EPA have begun to describe CO₂ used to extract oil as "geologically sequestered." Rather than advancing CCS technology or applying it to new settings, EOR has become another way to claim that CCS is growing by redefining a fossil fuel industry activity as CCS.

Sequestration is a term that was historically distinct from EOR,²⁷ but fossil fuel advocates sought to muddy the terminology by including EOR under the umbrella of "utilization," and trying to use a new acronym that includes this (CCUS or carbon capture, utilization and storage).²⁸ However, of the 16 million metric tons of CO₂ reported as "sequestered," 92 percent is used in enhanced recovery wells, and less than 5 percent is injected in dedicated storage facilities (the rest is injected in Class 2 disposal wells).²⁹

Conclusion

Academic research broadly concludes that an electricity system based on 100 percent renewables and energy storage is not only feasible, but would be comparable in cost or cheaper for consumers than the current electricity grid.³⁰ The results of a 2019 literature review of 180 peer-reviewed studies is unambiguous: "The great majority of all publications highlights the technical feasibility and economic viability of 100% RE [renewable energy] systems."³¹ Technological improvement continues to widen the cost gap between fossil fuels and renewables. For example, a 2025 study modelling 100 percent renewable energy across the Americas found that the levelized cost of electricity in a 100 percent renewable scenario would be nearly half the cost of the "business as usual" fossil fuel scenario.³²

On the other hand, carbon capture promises to save costly fossil fuel investments from the threat of climate policy by resurrecting the "clean coal" narrative, painting them as "clean fossil fuels" that can be burned forever.³³ According to Occidental Petroleum's CEO, "If it's produced in the way that I'm talking about, there's no reason not to produce oil and gas forever."³⁴ One oil driller claimed that direct air capture was like "draining the ocean with a straw," but praised the public relations benefit of the technology, saying, "Let's go run out there and build all these plants we can build to shut up whoever we need to shut up."³⁵

Endnotes

- ¹ Congressional Research Service (CRS), "The Section 45Q Tax Credit for Carbon Seguestration," August 25, 2023 at 2.
- Ibid.; CRS. "CO₂ Underground Injection Regulations: Selected Differences for Enhanced Oil Recovery and Geologic Sequestration." June 16, 2020 at 1 and 2.
- Plumer, Brad. "A bill that's big for fossil fuels, not so beautiful for clean energy." *New York Times.* July 3, 2025; Dabbs, Brian and Christa Marshall. "How the megabill shakes up fossil fuels, renewables." *E&E News.* July 2, 2025; U.S. Energy Information Administration (EIA). "Tax credits drive carbon capture deployment in our Annual Energy Outlook." July 18, 2025.
- Warwick, Peter D. et al. United States Geological Survey. "National Assessment of Carbon Dioxide Enhanced Oil Recovery and Associated Carbon Dioxide Retention Resources Results." 2022 at 1.
- Wallace, Matt. Advanced Resources International, Inc. (ARI). "U.S. CO₂ EOR Survey Updated to End-of-Year 2022." March 13, 2024 at 8.
- U.S. Environmental Protection Agency (EPA). "Supply, Underground Injection, and Geologic Sequestration of Carbon Dioxide." November 5, 2024. Available at https://www.epa.gov/ghgreporting/supply-underground-injection-and-geologic-sequestration-carbon-dioxide. Accessed November 2024.
- ⁷ EPA. "Greenhouse Gas Equivalencies Calculator Calculations and References." Available at https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator-calculations-and-references. Accessed February 2025.
- 8 Wallace (2024) at 15.

- Warwick et al. (2022) at 1; EPA. "Greenhouse Gas Equivalencies Calculator Calculations and References." Available at https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator-calculations-and-references. Accessed February 2025.
- CRS (2023) at 2; EIA. "Spot Prices (Crude Oil in Dollars per Barrel, Products in Dollars per Gallon)." February 12, 2025. Available at https://www.eia.gov/dnav/pet/pet_pri_spt_s1_a.htm. Accessed February 2025.
- EPA. "Greenhouse Gas Equivalencies Calculator Calculations and References." Available at https://www.epa.gov/energy/greenhouse-gas-equivalencies-calculator-calculations-and-references. Accessed February 2025.
- CRS (2023) at 2; EIA. "Spot Prices (Crude Oil in Dollars per Barrel, Products in Dollars per Gallon)." February 12, 2025. Available at https://www.eia.gov/dnav/pet/pet_pri_spt_s1_a.htm. Accessed February 2025.
- 13 CRS. "Energy Policy Act of 2005: Summary and Analysis of Enacted Provisions." RL33302. March 8, 2006 at 34 and 35.
- U.S. Department of Energy (DOE). National Energy Technology Laboratory. "Carbon Sequestration Through Enhanced Oil Recovery." April 2008 at 2 and 3.
- See Food & Water Watch (FWW). "Fracking's Bridge to Climate Chaos: Exposing the Fossil Fuel Industry's Deadly Spin."
 January 2020 at 3 to 5.
- Gardner, Timothy. DOE. "Using oil to reduce carbon emissions." *Reuters*. December 11, 2011; Dooley, J.J. et al. "CO₂-driven Enhanced Oil Recovery as a Stepping Stone to What?" July 2010 at 3 and 4.
- Natural Resources Defense Council (NRDC). "Tapping into stranded domestic oil: Enhanced oil recovery with carbon dioxide is a win-win." July 2008 at 1.
- National Enhanced Oil Recovery Initiative (NEORI) "Carbon Dioxide Enhanced Oil Recovery: A Critical Domestic Energy, Economic, and Environmental Opportunity." February 2012 at i; NEORI. "NEORI Participant List." Available at https://web.archive.org/web/20130806043335/http://neori.org/about/participants and on file at FWW.
- ¹⁹ NEORI (2012) at 2.
- Guerin, Emily. "Can more oil extraction cut CO₂ emissions from power plants?" *High Country News*. December 9, 2013; Mordick, Briana. NRDC. "Enhanced oil recovery is a step toward large-scale carbon capture and sequestration if done right." October 28, 2011; Waltzer, Kurt. Clean Air Task Force. "Enhanced Oil Recovery Takes a Big Step Forward." March 3, 2012.
- Clouse, Thomas. "Contaminated CO₂ from Mississippi volcano pressures local brewers." *Spokane (WA) Spokesman Review.* September 22, 2022; ARI. "The U.S. CO₂ Enhanced Oil Recovery Survey." February 2024 at 3; FWW analysis of Mississippi Oil and Gas Board data. CO₂ Production and Fate. Available at https://www.ogb.state.ms.us. Accessed May 2025.
- ARI (2024) at 6 and 7; Kuuskraa, Vello and Matt Wallace. ARI. "CO₂-EOR set for growth as new CO₂ supplies emerge." Oil & Gas Journal. May 5, 2014.
- ²³ CBO. "Carbon Capture and Storage in the United States." December 2023 at 9.
- ²⁴ EPA. "Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2022." EPA 430-R-24-004. April 2024 at 4-96 to 4-98.
- Waltzer (2012) at 5; Osaka, Shannon. "Companies capture a lot of CO₂. Most of it is going into new oil." *Washington Post*. October 25, 2023; Guerin (2013).
- ²⁶ CBO (2023) at 9; Gardner (2011); Dooley (2010) at 3 and 4.
- ²⁷ Dooley (2010) at 3.
- Greenwald, Judith. Center for Climate and Energy Solutions. "Putting the 'U' in CCUS." May 3, 2012. Available at https://c2es.org/2012/05/putting-the-u-in-ccus. Accessed November 2024.
- EPA. "Supply, Underground Injection, and Geologic Sequestration of Carbon Dioxide." November 5, 2024. Available at https://www.epa.gov/ghgreporting/supply-underground-injection-and-geologic-sequestration-carbon-dioxide. Accessed November 2024.
- Breyer, Christian et al. "On the history and future of 100% renewable energy systems research." *IEEE Access*. Vol. 10. July 2022 at 78202; Aghahosseini, Arman et al. "Energy system transition pathways to meet the global electricity demand for ambitious climate targets and cost competitiveness." *Applied Energy*. Vol. 331. February 2023 at 1, 3, and 16.
- Hansen, Kenneth et al. "Status and perspectives on 100% renewable energy systems." Energy. Vol. 175. May 2019 at abstract and 476.
- Breyer, Christian et al. "On the role of solar pv for the energy-industry transition in the Americas." *IEEE Journal of Photovoltaics*. Vol. 15, No. 1. January 2025 at abstract.
- Firdaus, Nur and Akihisa Mori. "Stranded assets and sustainable energy transition: A systematic and critical review of incumbents' response." *Energy for Sustainable Development*. Vol. 73. April 2023 at 76 and 77.
- Domonoske, Camila. "This oil company invests in pulling CO₂ out of the sky so it can keep selling crude." December 27, 2023.
- 35 Ibid.

